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On the flow between a rotating and a stationary disk 

By G. L. MELLOR, P. J. CHAPPLEt AND V. K. STOKES$ 
Department of Aerospace and Mechanical Sciences, Princeton University 

(Received 28 April 1967) 

The analysis and experiments in this paper are restricted to the flow between 
two coaxial, infinite disks, one rotating and one stationary. The results of 
numerical calculations show that many solutions can exist for a given Rey- 
nolds number Q12/v (Q is the angular velocity of the rotating disk and I is the 
spacing between the two disks). Out of a greater number of possible solutions, 
three solution branches have been identified; the branches correspond to one-, 
two- and three-flow cells in the meridional plane. 

The one-cell branch has been accorded detailed treatment. Within this 
branch there are two subbranches. The first, now well documented in the litera- 
ture, includes solutions from zero to infmite Reynolds number. The latter limit- 
ing case is characterized by an inward-flowing boundary layer on the stationary 
disk and an outward-flowing boundary layer on the rotating disk. In  between 
is a core flow rotating with a constant angular velocity. The second sub-branch 
of the single-cell flows, apparently unknown heretofore, begins with an infinite 
Reynolds number, decreases to a minimum and then increases to an infinite 
Reynolds number again. The first infinite Reynolds number limit again corre- 
sponds to two boundary-layer flows separated by ;L core flow with constant angular 
velocity opposite in direction to the angular velocity of the rotating disk. The 
second limiting case of infinite Reynolds number is the free-disk solution of von 
K&rm&n (1921). Asymptotic solutions have been obtained which more fully 
describe the nature of this flow as the Reynolds number increases. 

The second part of the paper presents experimental measurements corre- 
sponding to the Reynolds number range 0-100. Profiles were measured with a 
hot-wire anemometer, The measurements are in agreement with the first, 
one-cell branch of solutions. A semi-quantitative evaluation of edge effects is 
obtained . 

1. Introduction 
Discussion of the steady flow of a viscous incompressible fluid between two 

infinite disks is often generalized to cases where the ratio of their angular 
velocities is arbitrary. However, in this paper we restrict discussion to cases 
where one disk is stationary. Reynolds number is then the only apparent 
independent variable. 

The problem has aroused interest because of the possibility of obtaining 
exact solutions to the Navier-Stokes equations for any Reynolds number; 
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as the Reynolds number increases one would expect to observe the evolution 
of a boundary layer and a reasonable guess might be that the flow would ap- 
proach the free-disk solution of von G r m b n  (1921) such that, outside of the 
rotating-disk boundary layer, the radial and tangential velocities would tend 
to zero. However, Batchelor (1951), in an early extension of von K&rm&n’s 
formulation, argued that the main body of fluid would rotate with constant 
angular velocity and boundary layers would develop on both disks as the 
Reynolds number increased. This view was later challenged by Stewartson 
(1953), who argued that the free-disk solution of von KBrm&n was, in fact, 
the proper limiting case for large Reynolds number. He based his reasoning on 
the trend observed in solutions obtained with a series expansion for small 
Reynolds number. More recent numerical solutions by Lance & Rogers (1962) 
and by Pearson (1965) indicate clearly that the small Reynolds number trend 
is misleading and that Batchelor’s qualitative picture of the flow was correct 
in all essentials. 

The conclusion one might reach from the above evidence is that the free-disk 
solution of von HArmbn is not a limiting case of the two-disk solutions. How- 
ever, in the present paper the alternative result is demonstrated; the von 
KBrm&n solution is seen to be the limit solution of a certain branch of two-disk 
solutions as the Reynolds number increases. Furthermore, it is apparent that 
many other solutions for a single Reynolds number are possible. 

The experimental results to be presented were obtained before the above 
picture was clear. The only data obtained correspond to the one-cell branch 
described by Batchelor, thus lending experimental verification to Batchelor’s 
prediction. 

2. The governing equations 
The governing equations for an incompressible flow consist of the continuity 

equation and the three equations of motion. Assuming axial symmetry, they 
are i a  aw 

r ar az 
--(ru)+- = 0, 

(4) 
aw all] 1 ap ( a Z w  1 aw aztO 

ar az p a ~  ar2 r ar az2 

If we let I be the disk spacing (see figure l), z = 0 be the stationary disk 
position, while z = 1 is the rotating-disk position and C2 its angular velocity, 
then the boundary conditions are 

U-+W------++J -+--+- 

u(r,O) = 0, 

v(r, 0) = 0, 

w(r,  0) = 0, 

u(r,l)  = 0, 
v(r, Z) = fir, 

w(r,  I) = 0. 
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-6 

z=o z=l 

FIGURE 1. Sketch of the co-ordinate system. Except for the analysis in the 
appendix, the origin is located on the stationary disk. 

Definitions (a) 
2 = 15 
w = nrG(5) 

u = QrH'(5) 

p / p  = Q2Z2 P( 6 )  + +hRar2 

w = - 2(nZ) H(5)  

Equations 
(H"/R)  + 2HH"- HI2 =z A -  G2 

(GIR) + 2HG'- 2H'G = 0 

= - 2{(H"/R)  + 2HH') 

Boundary conditions 

H ( 0 )  = 0 

H ( 1 )  = 0 

H'(0) = 0 

H'( 1 )  = 0 

G(0)  = 0 
G(l) = 1 

 TABLE^ 1. The basic equations using different scaling factors. Note that equation 
set ( b )  is used in two ways depending on the definition of w.t 

t For g(s2) = 1, set w = Q; for g'(0) = 1, set w = {(v*/r) (aw/i3z),,,}8. Solutions in the form 
= og(7J and I = (v/w)hy2. of set ( b )  may be rescaled in the form of set (a) by noting that 

7 Fluid Mech. 31 
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In  table 1, for reasons to be discussed, we have formed two sets of equations 
based on different dimensional schemes. Equations (6a)-( 10a) or (6b)-( lob) 
are the assumed forms of the similarity solutions which result in the ordinary 
differential equations (1 1 a)-( 13 a)  or (1 1 b)-( 13 b ) .  The problem is to  obtain 
solutions to the two simultaneous equations (1 1) and (12) after which (13) can 
be easily solved for the axial pressure variation. There are six boundary con- 
ditions for the fifth-order system of equations; however, the radial-pressure- 
gradient parameter, A or A,  is arbitrary and must also be determined. 

In  equation set (a )  the Reynolds number, R = RZ/v, appears as a parameter 
in the differential equations. In equation set (b ) ,  if we set w = R (we shall later 
wish to change this definition), the Reynolds number appears as T~ = R*. 
This latter set of equations is useful in the free-disk limit R + co whereas equa- 
tion set (a) seems to be ideally suited to finite Reynolds numbers. For small R 
a series solution for small Reynolds number has been obtained by Stewartson 
(1953), Grohne (1955) and Lance & Rogers (1962). In  our present nomenclature 
this can be written 

3. Numerical solutions 
Initially, our approach was to cast equations (1 1 a )  and (12a) in the form of 

integrals for G(5) and H(5). The integrals explicitly embraced the boundary 
conditions as their limits, but the integrands were functions of G, H and H', 
which were guessed. Numerical quadratures were obtained for improved solu- 
tions. We found that the iterations could be made to converge up to a Reynolds 
number of about 100, but beyond that nothing could be done to bring about 
convergence. All of this is described in detail in a report by Chapple & Stokes 
(1963). 

Meanwhile, numerical solutions up to a Reynolds number of 441 appeared 
in the literature (Lance & Rogers 1962). These were obtained by the method of 
guessing A and two initial conditions over and above these provided at  one 
disk and integrating the full equations to the second disk. An iteration 
proceeded until the three boundary conditions on the second disk were satisfied. 
Later Pearson (1965) applied the interesting method of solving the unsteady 
Navier-Stokes equations and obtaining the asymptotic steady solutions at  
large times. In  particular he obtained a solution for a Reynolds number of 
1000 which was an apparent continuation of the solutions of Lance & Rogers 
(1962) and left little doubt as to  the asymptotic behaviour of the solutions for 
large Reynolds number. Batchelor's speculations were thus verified analytically. 

In  the interval 1962 to 1966 a revival of effort by the first author of this paper 
provided indication that the picture was not at all complete. After several 
trials the following procedure was adopted. 
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Equation set ( b )  forms the basis of our approach. The integration of ( l l b )  
and (12b) is started at the stationary disk, where we set h(0) = h‘(0) = g(0) = 0. 
Furthermore, we define the free parameter, w = {(v*/r) (aw/az),,,}% so that 
g’(0) = 1. To start the integration we now need to specify only two parameters, 
h”(0) and h”(0) = A. 

For given values of h”(0) and h”(0) the integration proceeds (we used a third- 
order Runge-Kutta technique) from 7 = 0 to some value where g(7) exceeds 
some large number (we chose 106). In  this interval, values of 7 where h’(7) = 0 
were recorded along with the corresponding values of h(7). For a given h”(O), 
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FIGURE 2. A map of the values h”( 0 )  and h’”( 0) which together with h( 0) = h’( 0) = g(0) = 0 
and g’(0) are the initial conditions to give any solution. The inset is a detail around the one- 
cell singular point seen in the main plot. 

one could vary h”(0) until h(7,) = 0 at the same vl where h’(7J = 0. This would 
then constitute a solution to our problem, which, if desired, could then be 
resealed to G(6) and H ( 6 ) .  (It is evident that g(7J = R/w and therefore 
R = !2Z2/v = ?fg(vl).) 

With the above system at our disposal it is, in principle, possible to identify 
all possible solutions on a plot of h”(0) w=s. h”(0). In figure 2 we have only traced 
out a three-cell branch of solutions, a two-cell branch and two one-cell branches. 
A ‘cell’ is defined as the flow bounded by planes of constant z where h = 0 
and therefore includes only its own recirculating fluid. 

In  figure 2 the first one-cell branch is shown as a solid line while the second 
one-cell branch is broken. At the juncture of these branches a very detailed 
treatment is required about a singular point where R approaches an infinite 
value. Where such points occurred in the two- and three-cell branches we have 
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discontinued the investigation. In  the case of the one-cell solutions, a detail is 
shown for the neighbourhood of the singular point. In  all but the first one-cell 
branch g(7) changes sign and such solutions have been designated by negative 
values of R. However, this is merely a convention of the present paper since, if, 
for R = R,, g1 and h, are a solution, then, for R = - R,, g, = - g, and h, = h, 
are another solution. Table 2 lists the numerical values of h”(0) along with useful 
values at the rotating disk, e.g. g’(yl) or G‘( I), which can be used to compute the 
torque exerted by the fluid on the rotating disk. 

1 - 1  - 1-1 
Cell 1 Cell 2 Cell 3 

2o 25 t 
FIGURE 3. A sample multi-cell solution. 

As noted previously we have carried out a detailed study of the two branches 
for only the one-cell cases. However, before discussing these solutions, sample 
three-cell solutions are illustrated in figure 3. 

We believe, but cannot prove, that the one-cell solutions have been deter- 
mined completely. The start of the sequence at h”(0) = h”(0) when R = 0 
is given by equations (30a, b,  c) in the form of G(6) and H ( 6 ) .  Then, using the 
numerical routine h”(0) and h”(0) are varied as previously described so as to  
satisfy the outer boundary conditions. In  table 2 it will be seen that, to reach 
the value R = 337 or R = - 958, one must finally resort to variations of h”(0) 
and h”(0) in the eighth decimal place, which is the limit of significance of the 
present calcu1ation.t As men in the solutions of figures 4 and 5 ,  a solid-body 
rotational core develops between the stationary and rotating disks where 
g ( 7 )  2: go = const. and h(7) z ho = const. 

To investigate the solution its R -+ ~f: co, we must analyse the core flow in 
some detail. There, it  should be possible to set 

S(rl) = 90+9,(7), Nrl) = hO+hl(7), (21 a. b )  
t We used evenly spaced intervals of AT = 0.01. Halving the interval yielded no significant 

change in the results except to alter the required value h”(0) for a given h’”(0) in the seventh 
decimal place. 
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where gl,h,  and all their derivatives are assumed to be small. Substituting 
(21a, b)  into (11 b)  and (12b), setting !A = gi and neglecting products of g,, h, 
and their derivatives yields 

?A; + 2h0x; + 2g0g, = 0, g; + 2h0g‘ - 2g0x; = 0. (22, LL b) 

Solutions to (22a,  b) can be obtained in the form 

9 = 90 + A1 exP { B I T )  cos {AT - $1) + A,  exp {%(T- 7012 cos - To)  - $22, 

( 2 3 4  

and q = 2go/h,2, 0 = &(tan-’q). A,, A,, $, are arbitrary constants. Since we 
shall find 9, to be negative and 9, positive, the additional constant qo has been 
introduced as a convenience by which the core size may be increased as the 
Reynolds number is increased. 

The Bodewadt solution 

The Bijdewadt (1940) solution whereby the flow is asymptotic to zero radial 
velocity and solid-body rotational velocity as q+co may be obtained by 
setting go = 1.183, h, = -0.743, A ,  = 1.2926, = 5-991 and A, = 0. These 
values are, of course, obtained by matching equations (23a, b) to the numerical 
solution corresponding to h”(0) = - 1.2187724, h”(0) = 1.4098730. In  fact, the 
two solutions match surprisingly well over the entire interval 3 < 7 < 7 .  

The two one-cell solutions for R + 5 co 
Again, with go = 1.183 and h, = -0.743 and with very large 7, the procedure 
is to  use equations (23a, b) to determine initial values at y = qo for h, h’, h’”, g 
and g’, which are used to restart the numerical calculation. For any small value 
of A,  (since T~ is arbitrary) a solution can then be determined for a given 4,. 

Two solutions were found in this manner which satisfy the outer boundary 
conditions. For A ,  = 0.001 we found 4, = 2.1677 and $, = 0.2566 at Y,I = yo. 

In  figures 4 and 5 the two solutions are shown and labelled R = +a. It 
should be noted that the numerical solutions and equations (23a, b) match well 
so long as 7 - ql < - 1.5. 

An examination of figures 4 and 5 indicates that our solutions for R = +GO 

are indeed the limit solutions of the two one-cell branches and that, with the 
help of equations (23a, b ) ,  flows for Reynolds numbers in the range 

3 3 7 < R < a  and -co<R< -958 

may be obtained by varying T ~ .  

Approach to the von KcirmlEn flow 

In figure 5 (or see figure 2) the absolute Reynolds number goes through a 
minimum and then increases. At R = -437 the solutions are in need of re- 
acaling, and this is achieved by setting w = SZ (instead of that necessary to 
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give g‘(0) = 1). Figure 6 continues plots of the solution in the rescaled (von 
K&rm&n 1921) co-ordinates. As will now be seen the flow approaches the free- 
disk solution as R-+ - 00, and a rather interesting andsimplesituation develops. 
The limiting behaviour can be obtained according to the ‘method of matched 

‘r I 
s . 
P 

II 
b, 

+ 
- 0  2 4 6 8 10 

I -2 0 0 

FIGURE 4. The solutions for R = 0 to  R= co. The later limit solution corresponds to  a 
solid rotational core bounded by layers with circumferential velocities of the same sense. 
The Bodewadt solution is also contained in this plot. 

asymptotic expansions’ reported by VanDyke (1964). Thisrather formalanalysis 
has been confined to the appendix so that we can here describe the principal 
results in simple terms. The outer flow is defined as the flow between the 
stationary disk and the thin boundary layer on the rotating disk. For small 
enough (i2Z2/v)-* we find that the circumferential velocity is essentially zero as 
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h’ 

0 2 4 6 8 10 
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-0.2 

-0.4 

h-0.6 

-0.8 

-1.0 

-4.2 - i u  
FIGURE 5. The solutions for R = - 00 to finite values. Circumferential velocities on the 

boundaries are in the opposite sense. The Bodewadt solution is also contained in this plot. 
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compared to  the large circumferential velocity in the boundary layer which is 
given by the von KBrmAn solution. The main function of the outer flow is to 
supply axial flow to the inner boundary-layer flow, which is then centrifuged 
outward. The first-order solution of the outer flow is, in fact, given by 

2, = 0, (34a)  

u = - 0*886(h’)t ( ~ / l )  6,  (34b)  
w = 0.886(t2~)*6~. ( 2 4 4  

-co 

0.1 & 
3 

0 
0 

(n/”)t(z- I ) 
0 

I 

- 30 - 20 - 10 

- W  
-m c 

FIGURE 6. A continuation of the solutions of figure 5 from R equal to  finite values to R = - co 
again. The variables have been resealed, however, so that the von Ktirmhn limiting solution 
remains finite. Note that the solutions for w do not exactly overlap but the differences 
are very small. 

At 6 = 1.0, w = 0.886(Qv)H is just the axial velocity required by the free-disk 
flow. Equations (24u-c) represent a vorticity-preserving flow or more precisely 
w(z,  r )  = (au/az-aw/ar)cc r ,  which accounts for the shrinking of vortex tubes 
while fluid moves radially inward. It can now be verified that equations 
(24a-c) are, in fact, exact solutions to  equations (1)-(4). Actually, they were 
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first obtained by Stewartson (1953); the appendix merely provides a syste- 
matic means of finding higher-order corrections. 

We have, by the way, recomputed the free-disk flow using starting values 
provided by equations (23a, a), where now go = 0. We find that our solution 
agrees in the third decimal place with the results reported by Cochran (1934). 

4. Experimental results 
A small apparatus was constructed consisting of a rotating and stationary 

disk, 4.29 in. radius and separated by an axial clearance of +in. The rotating 
disk was run at  speeds to give R = Q12/v = 50 and 100; at standard atmo- 
spheric conditions this corresponds to SL = 730 and 1460revlmin. 

1 

[ = z/h [ = z/h 
( a )  ( b )  

FIGURE 7.  Hot-wire velocity measurements compared with calculations at  R = 50. The disk 
spacing was Q i n . ,  radius 4.29in., and the rotational speed was 730rev/min. 0, measure- 
ments at 1.77 in. radius; n, 3 in. radius. 

A constant-current, hot-wire anemometer which was frequently recalibrated 
was used to measure the tangenthl velocity, and the radial velocity. Further, 
details of the apparatus and an estimate of errors axe contained in the report 
by Chapple & Stokes (1963). 

When the apparatus was initially run, the flow became turbulent at a Rey- 
nolds number !2Z2/v 2: 70. Correspondingly the Reynolds number based on 
outer radius, Qrilv, was 45,000, which is one-tenth the transition value of a 
free disk as found by Gregory, Stewa,rt & Walker (1955). Hot-wire probing 
indicated the source of the turbulence to be in the outward-flowing air at the 
outer juncture of the rotating disk and ;I stationary hardboard sheet which was 
flush with the disk. This turbulent air was then re-ingested on the stationary- 
disk side of the apparatus. The clearance between the disk and the hardboard 
sheet was then increased slightly, and suction was applied without result. 
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Finally the hardboard sheet was removed, leaving free edges, and the edges of 
both disks were machined to a &in. radius. The flow was then free of turbulence 
for R = 100 and less. 

Circumferential and meridional velocity measurements are shown in figures 
7 a ,  b and Sa, b for R = 50 and 100 respectively. Measurements were made at 
radii of 1.77 and 3.0 in. The data shown are the average of two sets taken at 
different times. The differences in the two sets were in all cases negligibly small. 
The theoretical predictions shown in the figures correspond to the first, one- 
cell branch of solutions. 

0 2  r 

5 = z / k  5 = z/h 

(a)  (b)  
FIGURE 8. Hot-wire velocity measurements compared with calculations at  R = 100. 

The rotational speed was 1460 rev/min. 0, 1.77 in. radius; 0, 3 in. radius. 

In the case of the inner-radius measurements of the circumferential velocity, 
agreement between theory and data is quite good, although there are some 
obvious errors near the disk surfaces. It is probable that the outer radius measure- 
ments are just as reliable and that, there, the difference between theory and data 
is due to the fact that the disks have a finite radius. 

Comparison of the radial velocities is less satisfactory and is partly explained 
by the fact that the radial velocities are quite a bit smaller than the circum- 
ferential velocities. Actually, the hot wire measures the total meridional 
velocity component 

H’2 + 2 :  H.)f, (m) = (  r 

u2+w2 + 

but at the inner and outer radius we have 2Zlr = 1-41 and 0.083, and H is 
less than 0.05 for both Reynolds numbers; the axial velocity is therefore 
negligible. The non-zero radial velocity measured where it obviously changes 
sign is a real error in measurement and reflects the difference between the uni- 
form flow in which the wire was calibrated and the highly sheared flow in the 
apparatus. With this in mind one suspects tha.t the radial velocities at the 
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inner radius are actually closer to the theoretical values than is indicated by the 
graphs. 

In  addition to  the velocity measurements, the radial pressure gradient was 
measured. A micromanometer was used to measure pressure differentials 
between two different intervals of radii. In  figure 9, the experimental points 
at R = 100 and only the solid points at R = 50 correspond to a spacing of 
kin. and a speed of 730 and 1460rev/min; for all the open points the rotating 

I I I 
50 100 150 0 

0 

R 

FIGURE 9. Radial-pressure-gradient measurements compared with calculated values. All 
of the open points correspond to 1460rev/min while the Reynolds number was varied by 
varying the spacing. The solid points at R = 50 correspond to the conditions of figure 7. 
Values of A are obtained from table 2 (A = h’‘’(O)/ga(vZ)). As R -+ 00, A -+ 0.102.n, measured 
between radii 1.77 and 2.375 in.; 0,  measured between radii 2.375 and 3 in. 

disk was maintained a t  the maximum rotational speed of 1460rev/min, while 
the spacing was adjusted to vary the Reynolds number. This was done to 
maintain a measurable pressure difference level for very small Reynolds 
numbers, The sum of the pressure differences at the two intervals of radii 
agreed well with the independent measurement of the total difference across the 
total radial interval. 

In  general it is clear that the measurements are in fair agreement with the 
first, one-cell branch of solution. Agreement is improved for the smallest radii 
as expected and for the smaller Reynolds numbers. It is also clear from the 
measurements that the fluid near the stationary disk has been re-ingested in 
the apparatus and originally was the fluid near the rotating disk. The fluid 
therefore has a higher tangential velocity at  the larger radius. It therefore 
seems clear that differences between theory and data are directly related to 
edge effects. 
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5. Conclusions 
It is now apparent that many solutions exist for a given Reynolds number, 

i2Z2/v. We have singled out the one-cell branch solutions for detailed study and 
have found two sub-branches. The first starts at zero Reynolds number and 
limits to an infinite-Reynolds-number flow characterized by solid-body rota- 
tion of the core and bounded by two boundary layers on the stationary and 
rotating disks: the second starts with an infinite absolute Reynolds number, 
decreases to a minimum and then increases to infinite Reynolds number again. 
The latter limiting case is the free-disk solution of von KArmAn characterized 
by a single boundary layer on the rotating disk. The limiting-flow solution 
between the boundary layer and the stationary disk is a rather simple solution 
to the Navier-Stokes equations. 

The experimental data obtained for QP/u = 50 and 100 clearly conform to 
the first one-cell branch of solutions. Agreement with theory improves as the 
radius decreases. 

When the experiments were run, the second one-cell branch of solutions were 
unknown. It is therefore left to speculation as to  the extent to which this type 
of flow can be realized in the laboratory. Our calculations indicate that the 
Reynolds number must be greater than about 220. Moreover, it  is probable that 
edge effects are important; that is, if angular momentum produced in the 
boundary of the rotating disk is re-ingested at the outer radius, it  is possible that 
the first sub-branch would still be obtained. On the other hand, if it could be 
arranged that the ingested air have negative (compared to the rotating disk) 
angular moment, then it is. possible that the second one-cell flow might be 
obtained. But, for very large Reynolds number, it is also possible that the 
second one-cell flow could be obtained approximately so long as the ingested 
air has a small enough positive angular momentum; this is inferred from the 
fact that the first-order asymptotic solution for large Reynolds numbers yields 
zero angular velocity outside of the rotating-disk boundary layer. Also, experi- 
mental data do exist for the free-disk limit (Gregory et al. 1955). 

Appendix 
In  this appendix we will examine the asymptotic solution which in the limit 

becomes the free-disk solution of von KArmAn (1921). It is convenient to reverse 
the co-ordinate system so that now z = 0 corresponds to the rotating disk and 
z = 1 is the stationary disk. If we set E = (i2Z2/v)-*, the inner solution, near the 
rotating disk, can be assumed to be 
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The outer solution will be assumed to be: 

21 = Qr{~Gi(g) +e2G2($) + ...}, 125b) 

w = -znz{sH,([)+€2H2(~)+...}, (26b)  

u = Qr{EH;([)+c2Hh([)+ ...}, (27b)  

(28b)  
g = 211. ( 2 9 b )  

p / p  = n"b"{EP,(g) + E2P2(k)  + . ..} 
+ &Q2r2 {en, + e2A2 + . . .}, 

The procedure is now as follows : 
(i) Insert equations (25a) - (28a)  into equations ( 2 )  and ( 3 )  and collect 

terms of order so, el, . . . . (We will here not consider the solution for the z depend- 
ence of p.). 

(ii) Insert (25b)-(28b) into ( 2 )  and (3) and collect terms of order so, el, .... 
Actually there are no terms of order €0. The terms of el yield A, = 0. 

(iii) satisfy the boundary conditions at q = 0 and 7 = 1. 
(iv) match the velocity components and the pressure near the disk, but out- 

side the disk boundary layer. To demonstrate the matching procedure, we 
consider w(r) = w(() where [ = €7. Therefore 

EG,(~ ) )+C~{G, (~ ) )+  ... = e{G1(0) +E~G;(O)+ ...} 
+ s 2 { G 2 ( O ) + ~ ~ G ~ ( O ) +  ...} 
+... 

Collecting terms and letting E 3 0 we have 
= so(r) + %(r) + * a * .  

go (r + 00) - 0,  g, (r -+ m) - G,(O), etc. 

Matching the pressures yields A, = 0. 

conditions in the order in which they must be solved: 
We shall now list the equations together with their corresponding boundary 

hli'+2hoh"-hh2 = -92 

g; + 2hogh - 2hhgo = 0, 

qo(0) = 1, So(? + 00) 0, 130) 

hh(0) = 0, h; (7-f co) - 0, 

h,(O) = 0. O' I 
(It should be noted that in the original set of equations h (or A) was undeter- 
mined and, therefore, a third, outer-boundary condition, ho (7 -+ co), was 
required. However, A, = 0 and the above equations lead to the von K&rm&n 
solution, where now a result is ho(co) = 0.443.) 

2HlH; - Hi2 = A, - GZ,, 

H,G;-H;G, = 0, 

H;(1) = 0, 

Hl(0) = h,(m) = 0.443, Hl( l )  = 0, 
G,(1) = 0. 
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(In this equation set we have lost the highest-order derivative; i.e. the equa- 
tions are inviscid. The differential equations are third order but A, is arbitrary.) 

Equations (30) yield the von K&rm&n solution, which calls for an axial velo- 
city flow to the disk boundary layer. This axial flow is essentially supplied by 
the solution to equations (31). 

The solution to equations (31) is remarkably simple. If we set A, = 0 it is 
possible to  satisfy the differential equations and all of the boundary conditions 
with G, = 0, 

Hl = 0.443(1- c)2. (33) 
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